PORTS-TO-PLAINS CORRIDOR INTERSTATE FEASIBILITY STUDY

SEGMENT \#1

EXECUTIVE SUMMARY

INTERSTATE
 27

Ports-to-Plains Corridor Interstate Feasibility Study (House Bill 1079)

The Ports-to-Plains Corridor is an international, nationa and state significant transportation corridor that connects and integrates Texas' key economic engines, international trade, energy production and agriculture. The corridor also plays a vital role in supporting the growing demographic and economic centers of South and West Texas. The corridor functions as the only northsouth corridor facilitating the movement of people and goods in South and West Texas and beyond.

Purpose of this Report

The Segment \#1 Committee Ports-to-Plains Corridor Interstate Feasibility Study Report (Segment \#1 Committee Report) provides he recommendations and priorities of the Segment \#1 Committee members for improvements to the Ports-to-Plains Corridor in Segment 1. The Segment Committee \#1 Report meets the requirements outlined in House Bill 1079 that was signed into law by Governor Greg Abbott on June 10, 2019. The recommendations in this Segment \#1 Committee Report will be used by the Ports-to-Plains Advisory Committee to make their recommendations on improvements to the Ports-to-Plains Corridor to the Texas Department of Transportation.

Significance of the Transportation Corridor

Ports-toPlains Corridor Overview

1) Approximately 963 miles of primarily rural area in West and South Texas

Designated by Congress as a High Priority Corridor on the National Highway System in 1998

17 Spans 26 counties and is comprised of sections of Interstate 20 (l-20), Interstate 27 (l-27), Interstate 35 (l-35), US 83 , US 87, US 277, US 287 State Highway 158, and State Highway 349

Connects to the state's and the nation's strategic trade gateways of Laredo Eagle Pass, and Del Ric to destinations north, west and east

Agriculture Production

Agriculture is a key driver of economic industry in the Ports-to-Plains Corridor, especially in the northern section of the corridor. The production and export of quality agricultural products (crops, livestock, dairy, etc.) generates billions of dollars and relies directly on highway networks for transport of products to market.

Annual Agriculture Sales within the Ports-to-Plains Corridor

Three of the top yearly agricultural commodities in Texas are:

$\$ 14$

Milk
$\$ 2=1$ Bilon

Energy Production

The Ports-to-Plains Corridor is a vital energy trade corridor that connects the Permian Basin and Eagle Ford Shale production areas. Importing materials and equipment for extraction requires a significant amount of freight, much of which relies on the Ports-to-Plains Corridor energy development to grow.

The Permian Basin comprises...
32\%
of U.S. crude oil production
13*
of U.S. natural gas production

The Permian Basin
accounted for.
\$9 of the state's taxe
or and gas producers
$67^{\%}$ of the total

The Eagle Ford Shale produced...

$\underset{\substack{5.5 \\ \text { million }}}{ }$ cubic feet of natural gas | 990 | bar |
| :---: | :---: |
| Thousand | |
| 2019 | |

Wind is also a critical component of the energy economy in west Texas. Much of that production comes from the counties along the Ports-to-Plains Corridor.

DInternational Trade
The corridor connects to the state's and the nation's strategic trade gateways of Laredo, Eagle Pass, and Del Rio. The corridor is critical to the continued economic prosperity of South and West Texas.
n 2018
the three border crossings accounted fo
50\%
of U.S.-Mexico
cross-border trade
$\$ 262$ billion
in trade

National Defense and Security There are several military installations and border enforcement facilities located along the Corridor. Existing I-27 in Segment \#1, portions of Segment \#2 and Segment \#3 are on the Strategic Highway Network. Improvements to the corridor could result in additions to the Strategic Highway Network and improve mobility on all that is currently designated.
of Texas-Mexico
cross-border trade

House Bill 1079

House Bill (HB) 1079 requires TxDOT to conduct a comprehensive feasibility study of the Ports-to-Plains Corridor, as defined by Texas Transportation Code 225.069

The study must evaluate the feasibility of, and costs and logistical matters associated with, improvements to the corridor that create a continuous-flow, four-lane divided highway that meets interstate standards to the extent possible.

HB 1079 describes the composition of the Segment Committees, consisting of volunteers who may represent municipalities, counties, metropolitan planning organizations (MPO), ports, chambers of commerce, and economic development organizations along the segment.

Ports-to-Plains Corridor Interstate Feasibility Study Milestone Dates

$$
\begin{gathered}
\begin{array}{c}
\text { Segment Committee } \\
\text { Reports Due to } \\
\text { Advisory Committee }
\end{array} \\
\text { June 30, 2020* }
\end{gathered}
$$

Advisory Committee
Final Recommendations
Due to TxDOT

October 31, 2020*

Segment \#1

Study Goals

W The goals of the Ports-to-Plains Corridor Interstate Feasibility Study include an examination and determination of:

Freight movement along the Ports-to-Plains Corrido

The ability of the energy industry to transport products to market

The economic development impacts of the Ports-to-Plains Corridor, including whether the improvement or expansion of the Ports-to-Plains Corridor would create employment opportunities in this state

Whether improvements or expansion of the Ports-to-Plains Corridor would relieve traffic congestion in the segment

Prioritization of improvements and expansion of the Ports-to-Plains Corridor that are warranted in order to promote safety and mobility, while maximizing the use of existing highways to the greatest extent possible and striving to protect private property as much as possible

The areas that are preferable and suitable for interstate designation

Project costs related to the improvement or expansion
of the Ports-to-Plains Corridor

Federal, state, local, and private funding sources for a project improving or expanding the Ports-to-Plains Corridor

Segment Committee Meetings

The Segment \#1 Committee met live five times during the Ports-to-Plains Corridor Interstate Feasibility Study. The Segment Committee's roles and responsibilities included electing a Chairperson and Vice Chairperson to assist in the development of meeting materials, attending Segment Committee meetings, providing feedback on corridor data and analysis presented by TxDOT, and providing segmentspecific study recommendations for consideration by the Advisory Committee.

District Coordination

- Provided current studies and roadway construction projects
- Reviewed cost estimate methodology and cost estimates
- Provided insight for frontage roads in rural areas
- Participated in Segment Committee and Public meetings

Public Outreach

The purpose of the outreach was to establish early and continuous public participation opportunities that provided information about transportation issues and decisionmaking processes to all interested parties.

1) This provided access to information about the study to enhance the public's knowledge and ability to participate in the development of the study and to receive feedback on preliminary recommendations made by the committees before submitting reports.

A key component of the stakeholder engagement for the Ports-to-Plains Corridor Interstate Feasibility Study was a robust public engagement process in accordance with requirements of HB 1079.
λ Eight public meetings were held between November 2019 and May 2020 on a quarterly basis at key study milestones as per HB 1079 requirements.

Existing and Future Corridor Conditions

Population

W From 1990 to 2020, population in Segment \#1 has grown 18%, compared to 33\% in the overall Ports-to-Plains Corridor.
D. Much of this growth has occurred in Hartley and Potter Counties.

1) At 419,186 people, (in 2017), Segment \#1 makes up 23\% of the corridor population.

D Population is projected to continue to grow, reaching 602,827 people by 2050 , an increase of 61%

Future growth in Segment \#1 is expected to remain slower than the rest of the Ports-to-Plains Corridor which is expected to grow by 61%.

Segment \#1 \& Corridor Population

Segment \#1: 18\%
Corridor: 33\%

Economic

1) Economic indicators such as employment, income, and gross domestic product (GDP) indicate substantial future growth in Segment \#1 and the Ports-to-Plains Corridor.

W Median household income in Segment \#1 is anticipated to grow 186% to \$153,632 in 2050, compared to the Corridor at 161\%.

V Segment \#1 has the highest anticipated percentage median income growth rate in the Corridor.

17 Gross domestic product in Segment \#1 is anticipated to grow 47\% by 2050, compared to the Corridor at 69%.

1) Health care, retail trade, and educational services are all major employers in Segment \#1.

D Segment \#1 is the only segment that has manufacturing in the top five industries. Manufacturing and warehousing is expected to remain a top employment industry in 2050 particularly in Moore, Carson, and Parmer Counties.

Segment \#1 Top Industries

Segment \#1 Forecasted Employment:
2050 Employment by Industry

Existing and Future Corridor Conditions

Trafific \& Safety

Comparing Interstate Upgrade to Baseline:
W Total traffic volumes are projected to grow 34\% corridor-wide and 20\% in Segment \#1.

V Total truck volumes are projected to grow 34\% corridor-wide and 23\% in Segment \#1.

7 The average crash rate in the corridor is projected to reduce by 21% and by 4\% in Segment \#1.

W Free flow travel times are projected to reduce by 34.2 minutes for the entire corridor and by $\mathbf{1 2 . 0}$ minutes in Segment \#1.

Average travel times are projected to reduce by 89.2 minutes for the entire corridor and by 23.7 minutes in Segment \#1.

Peak period travel times are projected to reduce by 145.7 minutes for the entire corridor and by 31.5 minutes in Segment \#1.

- Total Traffic Volumes - Vehicles Per Day Growth

	2018	Baseline (2050)	Interstate (2050)	\% Growth κ
Corridor	$\mathbf{1 0 , 6 0 0}$	$\mathbf{1 7 , 7 0 0}$	23,800	$\mathbf{3 4 \%}$
Segment \#1	$\mathbf{1 2 , 2 0 0}$	$\mathbf{1 8 , 1 0 0}$	21,800	20%

- Truck Traffic Volumes - Vehicles Per Day Growth

	2018	Baseline (2050)	Interstate (2050)	\% Growth*
Corridor	$\mathbf{2 , 2 0 0}$	$\mathbf{3 , 8 0 0}$	$\mathbf{5 , 1 0 0}$	$\mathbf{3 4 \%}$
Segment \#1	$\mathbf{2 , 8 0 0}$	$\mathbf{4 , 0 0 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{2 3 \%}$

Crash Rates - Reduction in Annual Crashes per 100M Vehicle Miles Traveled

	2018	Baseline (2050)	Interstate (2550)	$\%$ Reduction*
Corridor	$\mathbf{1 1 5}$	$\mathbf{8 6}$	$\mathbf{6 8}$	$\mathbf{- 2 1 \%}$
Segment \#1	$\mathbf{1 0 9}$	$\mathbf{8 1}$	$\mathbf{7 8}$	$-\mathbf{4 \%}$

- The interstate upgrade would result in yearly reductions across the state of approximately..

- Travel Times - Minutes Reduced

Freight

V In Segment \#1, the Baseline forecast projects total truck tonnage to grow 59\% between 2018 and 2050.
The total volume of freight to and from Segment \#1 reaches 77 million tons in 2050, the highest of the three segments.

V In Segment \#1, much of the truck traffic is concentrated along the existing $1-27$ corridor.
The interstate would divert truck volumes from nearby parallel routes, as well as national routes. This iversion is expected to increase corridor truck trafft from 2,200 in 2018 to 5,100 in 2050, an increase of 132 percent, and 34 percent over the baseline.

2050 Combined Tonnage
in Segment \#1

Warehouse and Distribution Sector Access

Outbound Truck Trip Flows

As shown on the map below, outbound truck trips originating in Laredo were tracked for a 7-day period as compiled by the American Transportation Research Institute (ATRI). The map illustrates the magnitude of truck traffic flowing from the Port of Laredo with thicker red lines indicating the heaviest flows.

The strongest outbound truck demand from Laredo is along the l-35 corridor to the Dallas-Fort Worth metropolitan area with other strong flows throughout Texas using other interstates, U.S. highways, and Texas state routes. The truck flows from Laredo reach all regions of the United States and into Canada.

Source: ATRI, 2019

As shown on the figure below and supported by research by the National Academy of Sciences,
warehouse and distribution sector development in Texas is driven by access to interstate highways.

Corridor Interstate Feasibility Analysis

The Segment \#1 Committee conducted an interstate feasibility analysis for the Segment \#1 portion of the Ports-to-Plains Corridor to determine if upgrading the entire corridor to interstate standards, where feasible, would achieve the goals in HB 1079

The Segment \#1 Committee considered two scenarios:

Baseline	Interstate upgrade
Scenario assumes only currently	Scenario assumes improvements to provide
planned and programmed projects	a continuous-flow, fully access-controlled
are implemented along the corridor	facility with a minimum of two lanes in each
by 2050 as listed in TxDOT's FY 2020	direction separated by a median within a
Unified Transportation Program.	typical 300- to 500-foot right-of-way.

The Segment \#1 feasibility analysis was performed to determine whether implementing a continuousflow four-lane interstate facility on the Ports-to-Plains Corridor would achieve the goals set out in HB 1079. Data collected during the existing conditions, forecasted conditions analysis and needs assessment was used to evaluate the scenarios against the goals.

Examination of Freight Movement

Findings

Reduce travel times from 89 to 146 minutes across the entire corridor and 24 to 32 minutes in Segment \#1 over the baseline.

Improved travel time and access results in diverting truck volumes from nearby parallel routes, as well as national routes like l-10, l-35 from Laredo to San Antonio, and $I-35$ to $I-70$ from Dallas to Denver. This results in truck traffic increasing 23% in Segment \#1 over the baseline

Attract corridor truck traffic from 2,200 in 2018 to 5,100 in 2050, a growth of 132 percent, and 34 percent over the baseline.

Provide improved access for agriculture and petroleum products as well as imports from International Trade Gateways to the south.

Travel Time Savings = the amount of time saved due to upgrading the Ports-to-Plains Corridor to an interstate.

Determination of Ability to Promote Safety and Mobility

Safety Findings

Upgrading the Ports-to-Plains Corridor-wide to an interstate would lower crash rates since interstates have 15 to 25% fewer crashes than a typical US highway and 35% fewer crashes than a typical state highway.

Over 2018 conditions, the interstate is estimated to reduce the crash rate by approximately

IV In 2050, the interstate is estimated to reduce crashes over the baseline by

Segment \#1

\square Corridor
The interstate upgrade will lower the number of crashes and provide a statewide monetary benefit of $\$ 450 \mathrm{M}$ when USDOT guidance regarding avoidance of fatal ($\$ 9.6 \mathrm{M}$), injury ($\$ 174 \mathrm{k}$) and property damage only ($\$ 4.3 \mathrm{k}$) crash reductions is considered.
Crash Rates $=$ the number of crashes per 100 million vehicle miles.

Mobility Findings

The interstate upgrade would provide a travel time benefit over the existing non-interstate due to greater travel speeds provided by full access control. The interstate upgrade would reduce travel time over the baseline:

	Corridor-wide		Segment \#1
34 minutes	Free-flow travel time savings	12 minutes	Free-flow travel time savings
89 minutes	Average travel time savings	24	Average travel time savings
1.46 minutes	Peak travel time savings	32 minutes	Peak travel time savings

Ability of Energy Industry to Transport Products to Market

Findings

Create a fully access-controlled facility for the entire corridor with improved travel times and reliability for freight, including trucks transporting energy products to market.

1. Reduce travel times 89 to 146 minutes across the entire corridor and 24 to 32 minutes in Segment \#1 over the baseline
Provide a safer and more reliable route for trucks carrying energy products to market when traveling through cities and small towns.

This reduction in travel time, increased market access radius, and increase in route reliability provided by the interstate upgrade will help the energy industry transport products to market.

Determination of Traffic Congestion Relief

Findings

The interstate upgrade results in relatively higher speeds throughout the corridor. As a result, traffic would divert from parallel and intersecting roadways to take advantage of the improved travel time on the Ports-to-Plains Corridor.

- Regional:
- Most diversion to the Ports-to-Plains Corridor comes from highways within 100 miles of the corridor
- The interstate upgrade shows a stronger traffic diversion capability over the baseline indicating the ability to reduce traffic congestion from nearby corridors in Segment \#1 and from other corridors in the state.
- In Segment \#1, the interstate upgrade diverts east/west trips from the US 57 (Eagle Pass to San Antonio) and US 90 (Del Rio to San Antonio) corridors and attracts north/south trips from US 83 , SH 55, and I-35 between Laredo and San Antonio
(1) Statewide:

The interstate upgrade diverts traffic from other corridors state-wide. The data showed significant traffic diversion of more than 5,000 vehicles per day from US 385 south of Hartley, US 385 to US 62 between Odessa and Lubbock, and US 84 between Lubbock and I-20.

- In Segment \#1, the interstate upgrade also shows a significant forecasted traffic diversion north of Amarillo on US 87 toward New Mexico and I-25. The interstate upgrade attracts trips to US 287 southeast of Amarillo towards Dallas/Fort Worth and diverts trips from l-40 west of Amarillo and into New Mexico.

D National:
The conversion of the Ports-to-Plains Corridor to an interstate would also create shifts in nationa travel patterns.

- The Ports-to-Plains Corridor would attract trips to l-44 from St Louis, Missouri to Wichita Falls and continuing towards the corridor while diverting trips away from other east-west routes east of Texas, such as I-10
- An interstate upgrade would also divert traffic from the I-70/I-135/I-35 route from Denver to Dallas and instead using l-25 through New Mexico and connecting to US 87 in Texas
- Moderate national diversions - such as trips from the Pacific Northwest being attracted across the Rockies towards Denver and southward to the Ports-to-Plains Corridor - were traced with diversions from I-10 and I-40 to the west.
- Key diversion patterns include trips between the Mexican states of Coahuila, Nuevo Leon, and Tamaulipas south of Texas, the Rocky Mountain and Midwestern states of New Mexico, Colorado, Kansas, Oklahoma, and Missouri, and trips between the Gulf of Mexico coast toward the north Mountain and Pacific Northwest states.
- The magnitude of diversion and growth are also a response from increases in foreign trade via land ports with industrial areas of Mexico, and international seaport trade that can more easily reach Gulf of Mexico ports due to the Panama Canal expansion.

Determination of Areas Preferable and Suitable for Interstate Designation

There are three ways to obtain future interstate designation:

Method 1:

If the corridor currently meets interstate standards, the US DOT Secretary may designate as an interstate under 23 USC 103(c)(4)(A),

Method 2:

If the corridor does not currently meet interstate standards, TxDOT may submit a proposal requesting designation as future interstate under 23 USC
103(c)(4)(B), or

Method 3:

The corridor may be designated part of the
interstate system by a congressional act.

Findings

Method 1

1) The southern 103 miles of Segment \#1 is already designated $\mathrm{I}-27$. The remaining 172 miles of Segment \#1 are on U.S. highways, consisting of generally 2 to 4 lanes, and have ower design speeds with smaller right-of-way widths, including 7 miles of controlled-acces freeway. Therefore, the Segment \#1 corridorwith the excention of I -27-does not currently at inerstard and is not curren suitable for interstate designation under 23 USC 103(c)(4)(A).

Method 2

IV As discussed under Method 1 , the existing 274 mile corridor does not currently meet interstate standards except for l-27 from Amarillo to Lubbock. The Segment \#1 Committee then looked at whether the corridor could be designated as future interstate under Method 2 Based on the assessment of interstate eligibility requirements, the Segment \#1 Committee determined that TxDOT could submit for interstate designation under Method 2

Method 3

1) Since a congressional action is a politica process outside of the feasibility study, based on the Segment \#1 Committee's assessment they can pursue congressional act designation.

Assessment of Federal, State, Local, and Private Funding

Various funding sources would need to be explored from the federal, state, and local perspective to upgrade the corridor to an interstate. Potential funding sources at the federal, state, and local level and private sources include

Federal Funding

- Federal-Aid Highway Program
(Highway Safety Improvement Program (HSIP)
- United States Department of Transportation Build Program
- Infrastructure for Rebuilding America Discretionary Grant Program

Local Funding Sources

Metropolitan Planning Organization
Amarillo Metropolitan Planning Organization

State of Texas

Programmed through the Unified Transportation Program (UTP) - a ten-yea program of planning, development and construction projects

- Proposition 1
- Proposition 7

D State Infrastructure Bank
State Highway Fund

Private Funding Sources

W County Energy Transportation Reinvestment Zone

Public-Private Partnerships

Evaluation of Economic Development Impacts, Including Job Creation

The interstate upgrade is essential to:
W) Improve connectivity, safety, and mobility, including improving access to market for energy and agricultural products, and facilitating the efficient flow of goods and international trade;

Weduce travel time and costs along the corridor;
Create jobs, new warehouses and distribution facilities, and other new businesses; and

1 Expand the local tax base.
Whe interstate is projected to provide the following economic benefits corridor-wide:

The economic benefits listed in this report come by fulfilling the implementation plan fully for the entire corridor. The economic benefits of the development of the corridor is important to each segment, but do not accrue to any individual segment without completing the entire corridor.

1) Total Annual Increase in Employment

22,100	Corridor Employment
$4,4,00$	Employment in the Rest of Texas

D Total Annual Increase in Gross Domestic Product

\$2.2 Corridor
 GDP
 \$0.4 Segment
 MLLON GDP

$\$ 640$	Rest of Texas
MILLION	GDP

The interstate is projected to create the following economic impacts to industries in the corridor:

Food and Agriculture

Industry Impacts
The food and agriculture industry is expected to experience significant benefits from the interstate, via reduced annual travel costs of \$295 million across the corridor.

- Increase jobs in the food and agriculture industry by $\mathbf{1 , 0 5 0}$ corridorwide and 290 in Segment \#1.

Wrow the food and agriculture sector GDP by $\$ 80$ million corridor-wide and \$34 million in Segment \#1.

Warehousing and
 Distribution Impacts

The two most important criteria in logistics facility site selection are access to key markets and interaction with the transportation network, which for highway transportation specifically means proximity to interstates and freeways. The interstate will:

Generate $\mathbf{\$ 3 6 5}$ million more direct warehousing output across the corridor and $\$ 80$ million more in Segment \#1

- Add 2,550 more warehousing and distribution jobs, including 500 additional jobs within Segment \#1.

Generate $\mathbf{\$ 4 5 0}$ million more in GDP compared to the baseline across the corridor, and $\$ 60$ million in GDP in Segment \#1.

Energy Industry

Impacts
The interstate will save energy companies approximately $\mathbf{\$ 5 0 5}$ million in time and money across the corridor, making it easie o access workers and customers. The interstate will:
V Increase energy industry jobs by 3,120 corridor-wide and 500 in Segment \#1.

- Grow the energy sector GDP by nearly $\$ 400$ million, with $\$ 90$ million in Segment \#1.

Economic Impacts of Construction and Maintenance Spending

Construction of the interstate will create temporary statewide economic impacts otaling $\mathbf{\$ 1 7 . 2}$ billion in cumulative GDP and 178,600 job-years, spread out across the duration of the design and construction period.

- Ongoing interstate maintenance will also support 2,090 long-term jobs and \$185 million in annual GDP statewide.
- Jobs would primarily support the construction industry, but would also provide opportunities in countless other industries.

Examination of Project Costs

The planning level cost estimate is based on a methodology typically used to develop costs during the transportation corridor feasibility stage The methodology used planning-level software with available mapping data for the corridor and assumptions developed in consultation with the TxDOT Amarillo District. Costs were adjusted to account for planned and programmed projects in Segment \#1 and used 2020 dollars.

Corridor- wide cost estimate
Segment $\# 1$ cost estimate

This cost estimate is preliminary for planning purposes only and is subject to change based on more detailed right-of-way and design information during future stages of project development.

The Segment \#2 cost estimate is 50\% of the total corridor cost and 50% of the mileage.

Cost Estimate Assumptions
A 75-mile per hour design speed and interstate standards for curves and grades

- 2019 TxDOT District bid tabs to calculate prices for pavement, earthwork, and bridges for the TxDOT Amarillo District

Major utility relocations based on available mapping data, and minor utilities as a percentage of costs

Seeding, mulching, lighting, and traffic control as a percentage of costs based on similar projects

Frontage roads in all urban areas
Frontage roads for approximately 157 miles in rural areas

Right-of-way costs as ten percen of the construction costs

Major utility relocation costs such as parallel pipelines, oil and gas wells, water wells, and parallel railroads

Full reconstruction of the corridor

Committee Recommendations and Implementation Plan

Recommendations

The Segment \#1 Committee makes the following recommendations:

7 interstate upgrade projects that would extend $1-27$ by upgrading the existing primarily two-lane corridor to an interstate level facility.relief route projects around communities where upgrading the existing facility to interstate standards would create significant adverse impacts.

4 safety and operational improvements along the corridor that are effective and low-cost strategies to improve safety on the existing corridor and compliment the interstate upgrade.

- Other general and policy recommendations to address the key issues along the corridor.

Implementation Plan

As outlined in HB 1079, the Segment \#1 Committee prioritized their recommendations fo mprovement and expansion of the Ports-to-Plains Corridor into the short-, mid-, and long-term.

Short-term projects	Mid-term projects are recommended for	Long-term projects are recommended for
implementation within	implementation within	implementation for 11
one to five years	six to ten years	or more years

These implementation phases are planning recommendations made by the Segment \#1 Committee; however, these identified projects may be accelerated or decelerated based on opportunities and reallocation of resources needed for construction and implementation.

Maps showing the Segment \#1 Committee project recommendations and the implementation plan are provided on the following pages

Committee Policy and General Recommendations

Committee Recommendations

Complete Planned and Programmed Projects

The Segment \#1 Committee recognizes TxDOT has already begun the process of funding projects that will improve highways by enhancing safety and serving traffic along the Ports-to-Plains Corridor. The Committee endorses efforts to complete the projects already planned and programmed by TxDOT and Amarillo Metropolitan Planning Organization.

Detailed Project-Level Planning Development Process
The Segment \#1 Committee recommends that TXDOT continues to further detailed project-level planning and development to implement the project recommendations outlined in the Plan to upgrade the Ports-to-Plains Corridor to an interstate facility. The activities should include the following:

- Develop detailed district-level implementation plan outlining project development process for each of the projects included in the recommendations of this plan.
- Specific location of items like frontage roads, bridges and grade separations (overpasses and underpasses) as the planning and development processes continue, and
- Future connections and interchanges with the proposed interstate to other regional highways that serve the region.
- Environmental Review and Public Input

The Segment \#1 Committee recommends construction of any relief route undergo an extensive environmental process and require public input and comment.

- Importance of Community Support The Segment \#1 Committee recognizes the importance of community support including esolutions for supporting future interstate designation adopted by communities, counties, organizations and businesses within Segment \#1 and has included a signed resolution in the Segment 1 Committee Ports-to-Plains Corridor Interstate Feasibility Study Report.
- Proposal Requesting Interstate Designation
As part of the ultimate upgrade of the Ports-toPlains Corridor to an interstate, the Segment \#1 Committee recommends TxDOT submit a proposal requesting designation as a future interstate by FHWA that includes developing agreements with the New Mexico, Oklahoma, and Colorado Departments of Transportation committing to construction of the orridor within 25 years that includes the following sections:
- Extending US 287 for 190 miles through Oklahoma and Colorado and terminate at I-70 in Limon, Colorado, and
- Extending US 87 for 90 miles through New Mexico and terminate at I-25 in Raton, New Mexico.

Continued Role of the Advisory Committee
Once this Ports-to-Plains Corridor Interstate Feasibility Study is complete, the Segment \#1 Committee recommends the Advisory Committee continue to guide the Implementation Strategy to manage the continued development and designation of the interstate upgrade in Texas.

Committee Implementation Plan

Description	Location	Short-Term (0-5 years)	$\begin{aligned} & \text { Mid-Term } \\ & \text { (6-10 years) } \end{aligned}$	Long-Term (11+ years)
Upgrade to interstate (approximately 12 miles) ${ }^{\text {a }}$	US 287 (from Kerrick to Stratford)	-	-	Project Feasibility ${ }^{\circ}$ / Preliminary Design / Environmental / Final Design / ROW Acquisition / Construction
Upgrade to interstate (approximately 14 miles) ${ }^{\text {a }}$	US 287 (from Stratford to Cactus)	-	Project Feasibility ${ }^{\text {c }}$ Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {\%/ }}$ Construction
Upgrade to interstate (approximately 7 miles) ${ }^{\text {a }}$	US 287 (from Cactus to Dumas)		Project Feasibility ${ }^{\text {o/ }}$ Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\circ}$ / Construction
Upgrade to interstate (approximately 28 miles $)^{\text {a }}$	US 87 (from TX) NM State Line to Dalhart)	-	-	Project Feasibility ${ }^{\text {c }}$ / Preliminary Design / Environmental / Final Design / ROW Acquisition / Construction
Upgrade to interstate (approximately 7 miles) ${ }^{\text {a }}$	US 87 (from Dalhart to Hartley)	-	Project Feasibility ${ }^{\circ}$ Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b }}$ / Construction
Upgrade to interstate (approximately 18 miles) ${ }^{a}$	US 87 (from Hartley to Dumas)	-	Project Feasibility ${ }^{\text {c }}$ / Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b/ }}$ Construction
Upgrade to interstate (approximately 38 miles) ${ }^{\text {a }}$	US 87 (from Dumas to Amarillo)	Project Feasibility ${ }^{\text {c }}$ Preliminary Design / Environmental	Final Design, ROW Acquisition, Construction	Wrap up Construction
Texline Relief Route ${ }^{\text {d }}$	Around City of Texline	-	-	Project Feasibility ${ }^{\circ} /$ Preliminary Design / Environmental / Final Design / ROW Acquisition / Construction
Dalhart Relief Route ${ }^{\text {d }}$	Around City of Dalhart	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b/ }}$ Construction

Description	Location	Short-Term (0-5 years)	$\begin{aligned} & \text { Mid-Term } \\ & \text { (6-10 years) } \end{aligned}$	Long-Term (11+ years)
Hartley Relief Route ${ }^{\text {e }}$	Around City of Hartley	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b }}$ / Construction
Stratford Relief Route ${ }^{f}$	Around City of Stratford	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b/ }}$ Construction
Cactus Relief Route ${ }^{f}$	Around City of Cactus	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental / Final Design	ROW Acquisition ${ }^{\text {b }}$ / Construction
Dumas Relief Route ${ }^{\text {e }}$	Around City of Dumas	Project Feasibility ${ }^{\circ}$ / Preliminary Design / Environmental	Final Design / ROW Acquisition b / Construction	Continuation of Construction
State Loop 335 Relief Route	Off US 87, extends along west side of Amarillo (under construction/ partially funded)	Project Feasibility \& NEPA nearly complete as of Spring 2020 Final Design, ROW Acquisition; Utility Relocation, Construction	Continuation of Construction	
Safety/Operational Improvement	US 287 at US 54 intersection improvement in Stratford	Completed as part of interstate development		-
Safety/Operational Improvement	US 87 at US 54 intersection improvement in Dalhart	Completed as part of interstate development	Construction	-
Safety/Operational Improvement	I-27 Improvement to Curves within Hale County (near Hale Center)	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental	Final Design / ROW Acquisition / Construction
Safety/Operational Improvement	- -27 Improvement to Roadway Drainage between Hale Center and Abernathy	Project Feasibility ${ }^{\text {c }}$	Preliminary Design / Environmental	Final Design / ROW Acquisition / Construction
Notes: ${ }^{\text {a }}$ The mileage included in the table are approximations and do not include miles along the corridor covered by relief route recommendations. ${ }^{\mathrm{b}}$ Coordination with Railroad would be required. ${ }^{\text {c }}$ This report is a Feasibility Study of the entire Ports-to-Plains Corridor. Project Feasibility listed in this table are project specific feasibility studies required before Preliminary Design. ${ }^{\text {d }}$ Environmental to be completed with US 87 TX/NM State Line to Dalhart interstate upgrade. ${ }^{e}$ Environmental to be completed with US 87 Hartley to Dumas interstate upgrade. ${ }^{\dagger}$ Environmental to be completed with US 287 Stratford to Cactus interstate upgrade.				

Segment \#1 Committee Members

Jared Miller City Manager, Committee Chai City of Amarillo

Kevin Carter President and CEO Amarillo Economic Development Corporation

Joe Kiely
Vice-President of
Operations
Ports-to-Plains Alliance
Kasey Coker
Executive Director
The High Ground of Texas
3ob Brinkman
Mayor
City of Dumas
Ronnie Gordon
Judge
Hartley County

Phillip Hass
Mayor
City of Dalhart

Kyle Ingham Executive Director Panhandle Regiona Planning Commission
onya Keese
Executive Director Plainview Chamber of Commerce

Swisher County

Terri Beth Carter Judge Sherman County David B. Mull Judge
Hale County
Ernie Houdashell Judge Randall County

Milton Pax Committee Vice Chair
Ports-to-Plains Alliance

Ashley Posthumus President Dalhart Chamber of Commerce

Travis Muno
Administrator
Amarillo Metropolitan Planning Organization

Ricky Reed

Mayor
City of Stratford
Wesley Ritchey Judge
Dallam County
Nancy Tanner Judge Potter County

Johnnie "Rowdy" Rhoades
Judge
Moore County

Ross Wilson
President and CEO Texas Cattle Feeders Association

Carl Watson
Executive Director
Dumas Chamber of Commerce

Gary Molberg President and CEO Amarillo Chamber of Commerce

For more information:
Caroline A. Mays, AICP
Director, Freight, Trade, and Connectivity Section
Transportation Planning and Programming Division (512) 936-0904
caroline.mays@txdot.gov

Texas Department of Transportation

125 East 11th Street
Austin, TX 78701

